Risikomodelle im Spannungsfeld von Standardisierung versus Predictive Analytics und Big Data

ERM
-
25. Juni 2018
-
Von Frank Romeike, Stefan Trummer

Das Banken- und Versicherungsumfeld ist seit vielen Jahren im Umbruch. Dazu haben in nicht unerheblichem Maße die Aufsichtsbehörden und Standardsetter beigetragen. Wurden bis Mitte der 2000er interne Modelle stark von der Aufsicht forciert, haben die Regulatoren seit der Finanzmarktkrise eine Kehrtwende vollzogen. Die Regularien haben immer weiter zugenommen (BCBS 239, ILAAP, Revised ICAAP etc.), und sie sind deutlich restriktiver, wenn es beispielsweise darum geht, Kapital- oder Liquiditätsanforderungen mit institutsintern genutzten Risikomodellen zu quantifizieren. Disruptive Geschäftsmodelle von FinTechs, sich veränderndes Kundenverhalten und die Niedrigzinspolitik der Zentralbanken setzen die etablierten Finanzinstitute ebenfalls unter Ertrags- und Kostendruck.

Die Digitalisierung mit neuen Analysemethoden, künstliche Intelligenz (KI) und disruptive Dienstleistungsmodelle stellen Banken und Versicherungen vor gewaltige Herausforderungen. Finanzdienstleister müssen den digitalen Wandel aktiv gestalten, um attraktiv zu bleiben. Vor allem etablierte Marktteilnehmer haben den digitalen Wandel lange verschlafen. Während Start-ups mit neuen Geschäftsmodellen (siehe FinTechs sowie InsureTechs) den Finanzdienstleistungsmarkt aufrollen, kämpfen Banken und Versicherer auf vielen Gebieten um den digitalen Anschluss. 

Beispielsweise spricht der „Bankenreport Deutschland 2030“ davon, dass der deutsche Bankenmarkt kurz vor einem großen Umbruch steht: „In 10-15 Jahren wird es statt heute 1.600 nur noch 150 bis 300 Banken in Deutschland geben, die nachhaltig erfolgreiche Geschäftsmodelle haben.“ [vgl. Oliver Wyman 2018 sowie ergänzend McMillan 2014 und McMillan 2018]. Gründe sehen die Studienmacher unter anderem in FinTechs, Marktinfrastrukturanbietern sowie globalen Technologiekonzernen, die auf den deutschen Bankenmarkt drängen. 

Neue Lösungen brauchen neue Wege

Hinzu kommen neue Technologien und Innovationen – Big Data, Predictive Analytics und Machine Learning sind zu allgegenwärtigen Buzzwords geworden –, die den Finanzmarkt revolutionieren. Das Ziel des Einsatzes von Big-Data-Methoden und Datenanalysen liegt auf der Hand. Es geht um die Vermessung der Welt, der Kunden, das Erstellen von Persönlichkeitsprofilen und die Voraussage in Echtzeit aus immer mehr Daten. Diese Analytics-Verfahren werden in immer mehr Unternehmen eingesetzt – auch bei Banken und Versicherern. Einer der Hauptgründe liegt darin, Zusammenhänge zu erkennen, Prognosen abzuleiten und diese für Entscheidungen zu nutzen, am liebsten in Echtzeit [vgl. vertiefend Eicher/Romeike 2016]. 

Der Einsatz von Big Data und Artificial Intelligence (AI)-Methoden, beispielsweise Machine Learning, werden neben dem Einsatz im Marketing durchaus bereits im Risikomanagement von Finanzdienstleistern eingesetzt. Diese Methoden besitzen das Potenzial, die Prognosegüte von Risikomodellen signifikant zu verbessern, insbesondere bei der Identifikation von nicht-linearen Zusammenhängen zwischen Risikofaktoren und Risikoereignissen. Unter anderem FinTechs haben mit dem Einsatz von Predictive Analytics und selbstlernenden Algorithmen bereits positive Erfahrungen gemacht, beispielsweise bei der Berücksichtigung von Online-Aktivitäten (PayPal-Transaktionen etc.) im Scoring im Rahmen von Kreditentscheidungsprozessen. 

(...)

[Den vollständigen Artikel lesen Sie in der Fachzeitschrift RISIKO MANAGER 06/2018. Die Ausgabe ist seit dem 30. Mai 2018 lieferbar und kann auch einzeln bezogen werden.]

Autoren:
Frank Romeike, Gründer und geschäftsführender Gesellschafter RiskNET GmbH – The Risk Management Network.
Stefan Trummer, Head of Risk Solutions, BearingPoint Software Solutions.

Artikelbild: ©ktsimage – iStockphoto.com